Инвертор напряжения

С развитием альтернативных источников энергии, в частности с массовым внедрением солнечных панелей, инвертор напряжения находит все более широкое применение. Поскольку применяется как постоянный, так и переменный ток, то часто возникает необходимость в преобразовании энергии одного рода в другой. Устройства, преобразующие переменный ток в постоянный называются выпрямителями. В качестве выпрямителя чаще всего применяют диодный мост. А устройство, преобразующее постоянный ток в переменный называют инвертором.

Структура инвертора напряжения

По ряду положительный свойств большую популярность завоевал инвертор напряжения. Особенно широко он используется с целью преобразования электрической энергии постоянного тока аккумуляторной, солнечной батареи или суперконденсатор в переменное напряжение 230 В, 50 Гц для питания большинства промышленных устройств.

Принцип работы инвертора напряжения

Представим, что у нас имеется источник электрической энергии постоянного тока такой, как аккумулятор или гальванический элемент и потребитель (нагрузка), который работает только от переменного напряжения. Как преобразовать один вид энергии в другой? Решение было найдено довольно просто. Достаточно подключить аккумулятор к потребителю сначала одной полярностью, а затем через короткий промежуток отключить аккумулятор, а потом снова подключить, но уже обратной полярностью. И такие переключения повторять все время через равные промежутки времени. Если выполнять таких переключений 50 раз за секунду, то на потребитель будет подаваться переменное напряжение частотой 50 Гц. Роль переключателей чаще всего выполняют транзисторы или тиристоры, работающие в ключевом режиме.

На схеме, приведенной ниже, изображен источника питания Uип с клеммами 1-2 и потребитель RнLн, обладающий активно-индуктивным характером, с клеммами 3-4. В один момент времени потребитель клеммами 3-4 подключается к клеммам 1-2 Uип, при этом I от Uип протекает в направлении LнRн, а в следующий момент клеммы 3-4 изменяют свое положение и I протекает в противоположном направлении относительно потребителя электрической энергии.

Схема преобразования постоянного напряжения в переменное

Схема инвертора напряжения

Наиболее распространённая схема инвертора напряжения состоит из четырех IGBT транзисторов VT1…VT4, включенных по схеме моста, и четырех обратных диодов, обозначенных VD1…VD4, параллельно соединенных с управляемыми полупроводниковыми ключами во встречном направлении. Преобразователь питает активно-индуктивную нагрузку. Именно она является самой распространенной, поэтому была взята за основу.

Схема инвертора напряжения

Входные клеммы инвертора подключаются к Uип. Если таким источником служит диодный выпрямитель, то выход его обязательно шунтируется конденсатором C.

В силовой электронике наибольшее применение нашли транзисторы с изолированным затвором IGBT (именно они показаны на схеме) и GTO, IGCT тиристоры. При оперировании меньшими мощностями вне конкуренции полевые транзисторы MOSFET.

В момент времени t1 открываются VT1 и VT4, а VT2 и VT3 – закрыты. Образуется единственный путь для протекания тока через нагрузку: «+» Uип – VT1 – нагрузка RнLн VT4«-» Uип. Таким образом, на интервале времени t1 ‑ t2 создается замкнутая цепь для протекания iн в соответствующем направлении.

Инвертор напряжения

Режим работы схемы

Для изменения направления iн снимаются управляющие импульсы с баз VT1 и VT4 и подаются сигналы на открытие второго и третьего VT2,3. В точке t2 на оси времени t, первый и четвертый VT1,4 закрыты, а второй и третий – открыты. Однако, поскольку нагрузка активно-индуктивная, то iн не может мгновенно изменить направление на противоположное. Этому будет препятствовать энергия, запасенная на индуктивности Lн. Поэтому он будет сохранять прежнее направление до тех пор, пока не рассеется все энергия, запасенная на индуктивности в виде магнитного поля, равная Wм = (Lн∙i2)/2.

Автономный инвертор напряжения

В связи с этим, на отрезке времени t2 – t3 ток будет протекать через диоды VD2 и VD3, сохраняя прежнее направление на RнLн, но пройдет в обратном направлении через Uип или конденсатор C, если источником энергии является диодный выпрямитель. Поэтому следует обязательно установить конденсатор C, если преобразователь подключен к диодному выпрямителю. Иначе прервется путь протекания iн, в результате чего возникнут сильное перенапряжение, которое может повредить изоляцию потребителя и выведет из строя полупроводниковые приборы.

В момент времени t3 вся запасенная на индуктивности энергия снизится до нуля. Начиная с момента t3 до момента t4 под действием приложенного Uип через открытые полупроводниковые ключи VT2 и VT3 будет протекать iн через LнRн уже в другую сторону.

Схема автономного инвертора напряжения

В точке t4, расположенной на оси времени t, снимается управляющий сигнал с VT1,3, а VT1 и VT4 открываются. Однако iн продолжает протекать в ту же сторону, пока не расходуется энергия, запасенная в индуктивности. Это будет происходить на интервале времени t4 – t5.

Принцип работы инвертора напряжения

Работа схемы

Начиная с момента tiн изменить направление и потечет от Uип через LнRн по пути через VT1 и VT4. Далее все процессы, протекающие в электрической цепи, будут повторяться. На LнRн форма напряжения будет прямоугольной, но ток на активно-индуктивной нагрузке будет иметь пилообразную форму за счет наличия индуктивности, которая не позволяет ему мгновенно вырасти и снизиться. Если потребитель имеет чисто активный характер (индуктивность и емкость практически равны нулю), то формы iн и uн будет в виде прямоугольников.

Поскольку VT1…VT4 попарно открывались на всей протяженности соответствующих полупериодов, то на выходе преобразователя формировалось максимально возможное uн, поэтому через LнRн протекал iн максимальной величины. Однако часто требуется обеспечить плавное нарастание мощности на потребителе, например для постепенного увеличения яркости освещения или частоты вращения вала двигателя.

Следует пояснить, что сигналы, поступающие из системы управления СУ, подаются не сразу на базы полупроводниковых ключей, а посредством драйвера. Так как современные СУ построены на безе микроконтроллеров, которые выдают маломощные сигналы, не способные открыть IGBT, то для увеличения мощности открывающего импульса применяется промежуточное звено – драйвер. Кроме того на часто драйвер выполняет множество дополнительных функций – защищает транзистор от короткого замыкания, перегрева и т.п.

Инвертор напряжения с регулированием выходных параметров

Самый простой способ изменить величину uн заключается в регулировании величины подводимого Uип, если такая возможность имеется. Например, для регулируемого выпрямителя это не проблема. Но такие источники электрической энергии как аккумуляторная батарея, суперконденсатор или солнечная батарея не имеют данной возможности. Поэтому регулировка частоты и величины выходного uн полностью возлагается на инвертор.

Для регулирования величины uн одну пару диагонально противоположных транзисторов следует открыть несколько ранее, чем в рассмотренном выше случае. Поэтому алгоритмом системы управления следует предусмотреть сдвигу управляющих сигналов. Например, подаваемых на открытие VT1 и VT4 относительно импульсов управления, подаваемых на базы VT2 и VT3, на некоторый угол, называемый углом управления α.

Алгоритм управления транзисторами инвертора напряжения

Обратите внимание, что амплитудное значение uн остается неизменной величины и приблизительно равно значению Uип, но действующее значение uн будет снижаться по мере увеличения угла управления α. Рассмотрим, как это работает.

На интервале времени от t1 до t2 открыта пара транзисторов VT1 и VT4; iн протекает справа налево, как показано на схеме. В момент t2 закрывается первый транзистор и открывается второй. Ток сохраняет прежнее направление, а нагрузка оказывается замкнутой, в результате чего напряжение на ней падает практически до нуля, соответственно снижается и iн.

Схема инвертора напряжения на транзисторах

Схема преобразователя напряжения

Принцип работы преобразователя напряжения

Схема преобразователя напряжения на транзисторах

Далее из системы управления поступает команда и VT2 открывается, а VT4 закрывается. Однако накопленная в индуктивности энергия не позволяет току iн изменить свое направление, и он протекает по прежней цепи, только уже через диоды VD2 и VD3 встречно источнику питания. Длительность этого процесса продолжается до точки времени t4. В точке t4 под действием приложенного Uип iн изменяет знак на противоположный.

Широтно-импульсная модуляция

Такой алгоритм работы полупроводниковых ключей в отличие от предыдущего алгоритма формирует паузу определенной длительности, которая в конечном итоге приводит к снижению действующего значения uн. Для формирования iн синусоидальной формы применяется широтно-импульсная модуляция ШИМ. Преобразователь с ШИМ, а точнее алгоритм его работы, предусматривающий ШИМ, мы рассмотрим отдельно.

Также следует заметить, что рассмотренный алгоритм управления полупроводниковыми ключами называется широтно-импульсным регулированием ШИР, который часто путают с ШИМ, хотя разница огромная.

В преобразовательной технике ШИМ практически вытеснила ШИР, поскольку обладает рядом положительных свойств, благодаря которым повышается КПД всего устройства и снижается уровень электромагнитных помех. Поэтому в дальнейшем мы рассмотрим инвертор напряжения с ШИМ.

 

Комментировать

Ваш e-mail не будет опубликован. Обязательные поля помечены *