Конденсаторы | Принцип работы и маркировка конденсаторов
Конденсаторы выполняют множество полезных функций в схемах электронных устройств, несмотря на их простую конструкцию. Если разобрать до деталей несколько радиоэлектронных устройств, и сосчитать их, то окажется, что количество, рассматриваемых в данной статье элементов, превысит количество других отдельных радиоэлектронных приборов, в том числе и резисторов. Ввиду такого обстоятельства, нам следует уделить особое внимание конструкции, устройству и принципу работы конденсаторов.
Принцип работы конденсатора
Для большего понимания принципа работы конденсатора рассмотрим его конструкцию. Простейший конденсатор состоит из двух металлических пластин, называемых обкладками. Между обкладками расположен диэлектрик, то есть веществом, которое практически не пропускает электрический ток. Обкладки, как правило, имеют одинаковые геометрические размеры (квадрат, прямоугольник, круг) и равны по площади. Пластинки выполняются из алюминия, меди или драгоценных металлов. Наличие в составе обкладок драгоценных металлов вызывает повышенную охоту на радиорынках за советскими образцами данного радиоэлектронного элемента.
В качестве диэлектрика, расположенного между пластинами, применяют сухую бумагу, керамику, фарфор, воздух и т.п.
Принцип работы конденсатора состоит в следующем. Если одну пластину подключить к плюсу источника электрического тока, а втору – к минусу, то обе пластины зарядятся разноименными зарядами. Заряды будут продолжать удерживаться на обкладках даже после отсоединения источника питания. Это поясняется тем, что заряды разных знаков («+» и «-») стремятся притянуться друг к другу. Однако этому препятствует диэлектрик (материал, не проводящий заряды), расположенный на их пути. Поэтому заряды, распределенные по всей площади обкладок, остаются на своих местах и удерживаются силами взаимного притяжения.
Поляризация диэлектрика
Такое явление называется накоплением электрических зарядов. А конденсатор называют накопителем электрического поля, так как вокруг каждого заряд действует электрическое поле, под действием которого диэлектрик поляризуется, то есть молекулы его становятся полярными – имеют четко выраженные положительный и отрицательный полюса. Полюса молекул непроводящего вещества ориентированы вдоль линий электрического поля, созданного зарядами, расположенными на обкладках. Причем отрицательный полюс молекулы направлен к положительной пластинке, а положительный – к отрицательной.
Способность накапливать электрические заряды характеризуется емкостью конденсатора, отсюда происходит обозначение его на чертежах электрических схем C ( англ. capacitor – накопитель). Аналогично емкости сосуда – чем больше емкость сосуда, тем больше в нем помещается жидкости.
Емкость конденсатора относится к главному параметру и измеряется в фарадах [Ф], названная в честь выдающегося английского физика Майкла Фарадея.
Следует обратить внимание: правильно говорить не «один фарад», а «одна фарада».
Емкостью в одну фараду обладает конденсатор, который накапливает заряд, величиной в один кулон, если приложит к пластинкам напряжение один вольт.
Ранее часто можно было услышать такое утверждение, что емкость в 1 Ф – это очень много – почти емкость нашей планеты. Однако сейчас, с появлением суперконденсаторов так больше не говорят, поскольку емкость последних достигает сотни фарад. Тем не менее в большинстве электронных схем используют накопители меньшей C – пикофарады, нанофарады и микрофарады.
Расчет емкости конденсатора
Расчет емкости конденсаторов довольно прост. Она определяется тремя параметрами: площадью пластины S, расстоянием между пластинами d и типом диэлектрика ε:
Физический смысл данной формулы следующий: чем больше площадь обкладок, тем больше зарядов на ней может расположиться (накопиться); чем больше расстояние между пластинами и соответственно между зарядами, тем меньшая сила их взаимного притяжения – тем слабее они удерживаются на обкладках, поэтому зарядам легче покинуть обкладки, что приводит к снижению их числа, а следовательно и уменьшению емкости накопителя электрического поля.
Диэлектрическая проницаемость ε показывает, во сколько раз заряд конденсатора с данным диэлектриком превосходит заряд аналогичного накопителя, если между его пластинками той же площади и находящихся на таком же расстоянии вакуум. Для воздуха ε равна единице, то есть практически ничем не отличается от вакуума. Сухая бумага обладает диэлектрической проницаемостью в два раза больше воздуха; фарфор – в четыре с половиной раза ε = 4,5. Конденсаторная керамика имеет ε = 10..200 единиц.
Отсюда вытекает важный вывод: чтобы получить максимальную емкость при сохранении прежних геометрических размеров, следует применять диэлектрик с максимальной диэлектрической проницаемостью. Поэтому в широко распространённых плоских конденсаторах используют керамику.
Конденсатор в цепи постоянного и переменного тока
Поскольку между обкладками конденсатора находится диэлектрик, то электрический ток от одной пластинки к другой протекать не может, следовательно, образуется разрыв электрической цепи для постоянного и для переменного тока. Поэтому уверенно можем сказать, что конденсатор не пропускает постоянный ток! Переменный ток он также не пропускает, однако переменный ток постоянно перезаряжает накопитель, что создает картину, будь-то переменный тока проходит сквозь обкладки конденсатора.
Если к обкладкам разряженного конденсатора приложить постоянное напряжение, то в цепи начнет протекать электрический ток. По мере его заряда ток будет снижаться и при равности напряжений на пластинках и источника питания, ток перестанет протекать – образуется как бы разрыв электрической цепи.
Конденсаторы постоянной емкости
Емкость таких конденсаторов не предусмотрено изменять в процессе эксплуатации радиоэлектронной аппаратуры. Они отличаются широчайшим разнообразием и геометрическими размерами – от спичечной головки до огромных шкафов и находят наибольшее применение в печатных платах электронных устройств. Самые распространенные экземпляры показаны на фото.
Конденсаторы переменной емкости КПЕ
Для изменения емкости отдельного узла электрической цепи непосредственно в процессе эксплуатации электронного устройства применяют конденсаторы переменной емкости (КПЕ). Главным образом КПЕ использовались в приемниках старого образца для настройки колебательного контура на резонансную частоту радиостанции. Однако сейчас вместо КПЕ применяют варикапы – полупроводниковые диоды, емкость которых определяется величиной подведенного обратного напряжения. Теперь достаточно изменить напряжение, подаваемое на варикап, чтобы изменить емкость последнего, а результате и частоту колебательного контура.
Как правило, КПЕ состоит из ряда параллельно расположенных металлических пластин, разделенных воздухом, поэтому габариты их весьма значительны. Варикапы, напротив – имеют гораздо меньшие габариты, потому и заменили КПЕ.
Подстроечные конденсаторы
Подстроечные конденсаторы используются в узлах окончательной настройки радиоэлектронной аппаратуры. Чаще всего они встречаются в различного рода колебательных контурах или в устройствах, связанных с формированием частоты; в измерительных приборах. Также можно найти их в щупах цифровых осциллографов. Там они используются для устранения собственной емкости измерительных щупов, что позволяет максимально исключить погрешности при выполнении измерений высокочастотных сигналов.
Электролитические конденсаторы
Главным отличием и преимуществом электролитических конденсаторов является большая емкость при малых габаритах. Благодаря такому свойству они широко используются в качестве электрических фильтров для сглаживания выпрямленного напряжения, что делает их неотъемлемой частью любого блока питания.
Конструктивно электролитический конденсатор из алюминиевой фольги, которая служит одной из обкладок. Фольга смотана в рулон в виде цилиндра, что позволяет увеличить активную площадь обкладки. На фольгу наносится оксидный слой, который является диэлектриком. Второй обкладкой служит электролит или слой полупроводника. По этой причине электролитические конденсаторы являются полярными (значительно реже применяются и неполярные), то есть необходимо соблюдать полярность при включении их в цепь. В противном случае он выйдет из строя, чаще всего – взорвется. Поэтому следует быть крайне внимательным при включении такого радиоэлектронного элемента в электрическую цепь, что часто забывают делать при замене данного компонента.
Отрицательный вывод нового электролитического конденсатора короче положительного, а на корпусе рядом с ним наносится соответствующий знак – минус. В советской маркировке напротив, маркируется положительный вывод, со стороны которого на корпус наносится знак «+».
Также на корпусах электролитических конденсаторов в обязательном порядке присутствуют значения трех основных параметров: номинальное значение емкости, максимальное допустимое напряжение и максимальная рабочая температура.
Если с емкостью и допустимой температурой все понятно, то особое внимание следует направить на напряжение.
На электролитический конденсатор нельзя подавать напряжение, величина которого больше, чем указано на корпусе. В противном случае он взорвется. Большинство разработчиков электронной аппаратуры советуют не превышать напряжение на пластинках больше 80 % от допустимого значения.
Обозначение конденсаторов в схемах
На чертежах электрических схем обозначение конденсаторов строго стандартизировано. Однако данный радиоэлектронный элемент можно всегда узнать в схеме по двум параллельным, рядом расположенным вертикальным черточкам. Две вертикальные лини обозначают две обкладки. Эти черточки подписываются латинской буквой C, рядом с которой указывается порядковый номер элемента в схеме, а ниже или сбоку указывается значение емкости в микрофарадах или пикофарадах.
Маркировка конденсаторов
По мере развития электроники развивается и элементная база. Поскольку многие страны производят собственные радиоэлектронные элементы, то и маркировка их отличается от маркировки радиоэлектронных элементов других стран. Поэтому на первых этапах промышленного производства электроники применялось много разнообразных типов маркировки, однако стремление к унификации привело к более-менее ее упорядочению. Это позволило привести и маркировку конденсаторов к общим правилам. А преимущество здесь очевидное – радиоэлектронному элементу, произведенному в одной стране теперь можно довольно просто подобрать аналог производства другой страны. Идеально было бы свести все типы обозначений и маркировки привести к единому типу, что практически полностью уже выполнено.
Однако до сих пор широкий оборот имеют советские конденсаторы, отличающиеся небольшим, но разнообразием маркировки. В советской маркировке было задействовано все – цифры, буквы и цвета. Причем на корпуса элементов наносились как цифры с буквами, так и цвета, цифры и буквы. Цифры обозначают значение, буквы – единицы измерения.
Более распространенный тип маркировки состоит из цифр, которые обозначают емкость в пикофарадах, не путать с фарадами! Всегда нужно помнить, что в отличие от резисторов, маркировка которых выполняется в омах, базовой величиной размерности независимо от способа маркировки являются пикофарады (если цифры отделяются запятой, — то микрофарады). В общем, отсчет емкости начинается с пикофарад.
Также, ранее применялась исключительно цветовая маркировка – сплошной цвет с цветной точкой. Определить параметры можно только, воспользовавшись справочником.
Рассмотренные выше типы маркировки постепенно выходят из обихода, однако о них всегда помнят специалисты, выполняющие ремонт советской аппаратуры, в которой радиоэлементы имеют «старое» обозначение.
Наиболее удачным и совершенным способом обозначения электронных элементов является цифровое кодирование. Цифровое кодирование конденсаторов, как и резисторов, предполагает использование всего трех цифр. Такой подход позволяет реализовать множество комбинаций. Две цифры, расположенные слева обозначают мантису, то есть значащее число, а последняя – третья цифра показывает, сколько нулей нужно прибавить к двум предыдущим цифрам. Например, если на корпусе накопителя указано 153, то емкость его равна 15×103 = 15000 пФ = 15 нФ = 0,015 мкФ.
Помимо емкости накопители характеризуются еще рядом основных параметров, которые рассмотрены далее.
Маркировка SMD конденсаторов
Маркировка SMD конденсаторов может наноситься на корпус в виде цифрового кодирования, но в преобладающем большинство – это несколько запутанная шифровка, состоящая из одной или двух букв латинского алфавита. Если букв две – то первая обозначает производителя, что нас интересует в меньшей степени. А вот вторая или единственная буква обозначает мантису, аналогично, как и при цифровом кодировании. Оставшаяся цифра показывает количество нулей после мантисы. Расшифровать цифровое значение буквы можно с помощью таблицы, приведенной ниже.
SMD накопители с аналогичными характеристиками также отличаются размерами. Ряд стандартных размеров приведен в таблице и на рисунке, приведенных ниже. Особенно важно учитывать размеры радиоэлектронных элементов при проектировании печатных плат.
Маркировка электролитических SMD конденсаторов практически ничем не отличается от выводных аналогов. Отрицательная контактная площадка обозначается черной меткой на плоской стороне корпуса со стороны соответствующей контактной площадки. Также указываются допустимое напряжение в вольтах и емкость в микрофарадах.
Довольно часто встречаются корпуса, на которых отсутствуют какие-либо обозначения. Здесь может выручить только измеритель емкости.
Последовательное соединение конденсаторов
Последовательно соединение конденсаторов позволяет подать на их обкладки большее напряжение, чем на отдельный накопитель. Напряжение на пластинках распределяется в зависимости от емкости элемента.
Если два накопителя обладают одинаковой емкостью, то подведенное напряжение распределяется поровну между ними. Однако суммарная емкость будет в два раза меньше отдельного накопителя.
В общем случае, следует помнить такое правило: при последовательном соединении конденсаторов вместе они способны выдержать большее напряжение, но за это приходится расплачиваться снижением емкости.
Параллельное соединение конденсаторов
Такой способ соединения наиболее распространен в практическом применении, поскольку не всегда хватает емкости одного накопителя особенно в электрических фильтрах качественных блоков питания. Параллельное соединение конденсаторов реализует суммирование емкостей отдельных накопителей. Это довольно просто запомнить, опираясь на приведенную выше формулу, из которой видно, что с увеличением площади пластин повышается емкость.
Поэтому при параллельном соединении конденсаторов происходит как бы увеличение площади обкладок, благодаря чему они способны накопить большее число электрических зарядов.
Основные параметры и номиналы конденсаторов рассмотрены здесь.
Подскажите, что происходит с рабочим напряжением при параллельном соединении конденсаторов? Если соединили детали с разным рабочим напряжением?
На конденсаторах указывают МАКСИМАЛЬНОЕ рабочее напряжение.
Как правило, для работы используют конденсаторы с напряжением на 20-30% выше «рабочего».
При соединении паралельно емкость увеличивается, а напряжение остается неизменным — т.е. результирующий «конденсатор» расчитан на наименьшее напряжение из используемого в соединении.
Подскажите, мне нужно заменить один вздувшийся конденсатор, донора для которого я нигде не могу найти. А именно 35V 470мкф.
Возможна ли сборка франкенштейна из 4 конденсаторов номиналом: 25V 470мкф??
Так чтоб, две пары параллельно соединённых кондеров, соединить между собой последовательно.
Или лучше все это дело не городить и искать кондер нужного номинала??
Все это дело в блоке питания в мониторе